Pulmonary surfactant protein A inhibits the lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria and microsomes.

نویسندگان

  • Ana M Terrasa
  • Margarita H Guajardo
  • Elizabeth de Armas Sanabria
  • Angel Catalá
چکیده

Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5.95+/-0.73%). Under these experimental conditions, SP-A produces a smaller inhibitory effect in microsomes than in mitochondria. Additional studies of lipid peroxidation of rat lung mitochondria or microsomes using equal amounts of albumin and even higher compared to SPA were carried out. Our results indicate that under our experimental conditions, BSA was unable to inhibit lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria or microsomes, thus indicating that this effect is specific to SP-A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of lamellar inclusions in surfactant production: studies on phospholipid composition and biosynthesis in rat and rabbit lung subcellular fractions.

Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglyce...

متن کامل

Mitoxantrone and ametantrone inhibit hydroperoxide-dependent initiation and propagation reactions in fatty acid peroxidation.

The anthracenedione antineoplastic agents mitoxantrone and ametantrone are potent inhibitors of basal and drug-stimulated lipid peroxidation in a variety of subcellular systems (Kharasch, E. D., and Novak, R. F. (1983) J. Pharmacol. Exp. Ther. 226, 500-506). The mechanism by which these compounds function as antioxidants has been investigated using enzymic and chemical systems. Mitoxantrone and...

متن کامل

Mechanisms of lipid peroxide formation in animal tissues.

1. Homogenates of rat liver, spleen, heart and kidney form lipid peroxides when incubated in vitro and actively catalyse peroxide formation in emulsions of linoleic acid or linolenic acid. 2. In liver, catalytic activity is distributed throughout the nuclear, mitochondrial and microsomal fractions and is present in the 100000g supernatant. Activity is weak in the nuclear fraction. 3. Dilute (0....

متن کامل

Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...

متن کامل

Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae.

Saccharomyces cerevisiae is capable of responding to oxidants, including lipid peroxidation products. We investigate here the role of the mitogen-activated protein kinase Mpk1p in protection against linoleic acid hydroperoxide (LoaOOH), a product of radical attack on an unsaturated lipid. MPK1 was found to be required for resistance to LoaOOH. Furthermore, Mpk1p was rapidly and transiently phos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1735 2  شماره 

صفحات  -

تاریخ انتشار 2005